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QUESTION 1

Let:

A = The exact value of sin(75◦)

B = The exact value of cos(165◦)

C = The exact value of tan

(
3π

8

)

D = The exact value of tan

(
11π

8

)

Find A+B + C +D.
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QUESTION 2

Let:

A = sin(x) cos2(x) tan2(x) csc4(x) cot3(x) sec2(x) sin2(x) tan(x)

B = (csc(x)− cot(x))(csc(x) + cot(x))

C =

√
2− 2 cos(2x)

2
D = sin(x) sin(3x) + cos(x) cos(3x)

Find ABCD, in simplest form and in terms of x, assuming 0 < x <
π

2
.
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QUESTION 3

Given the polar equation:

r = 2017 cos(2017θ)

Let:

A = The number of petals in the polar graph of this curve

B = The length of one petal, as measured from the origin to the furthest tip

C = The number of times the polar graph of this equation intersects the polar graph of r = 420

D = The distance from the origin to the point where θ =
π

2017

Find
A

C
+
B

D
.
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QUESTION 4

Let:

A = cos(45) + i sin(45)

B = cos(75) + i sin(75)

C = cos(76)− i sin(76)

D = sin(0) + i cos(0)

Find the argument of ABCD, for i =
√
−1. Note: All angles are in radians.
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QUESTION 5

Find: ∣∣∣∣∣∣∣∣
1 3 2 1
2 1 −1 1
3 0 4 1
3 2 3 1

∣∣∣∣∣∣∣∣
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QUESTION 6

For parts C & D, choose the most specific name. Let:

A = The eccentricity of the conic given by
2017

8 + 16 sin(θ)

B = The length of the latus rectum of x2 + 9y2 − 4x− 72y + 139 = 0

C = The number of letters in the name of the conic described by the parametric equations

x = 3 sec(t) + 1

y = 6 tan(t) + 2

D = The number of letters in the name of the conic described by the parametric equations

x = sin(t) + 6

y = cos(t)− 9

Find A+B + C +D.
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QUESTION 7

Given:

f(x) = x5 + 6x4 − 4x3 + 106x2 − 5x− 680; f(
√

5) = 0 and f(−8) = 0

Let:

A = The number of complex roots

B = The sum of the real roots

C = The product of the nonreal roots

D = The sum of the squares of the real roots

Find A+B + C +D.
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QUESTION 8

Let:

A = The ratio of a to b if a and b are positive and
a

b
=
a+ b

a
B = The length of AB, given that ABC is an isosceles triangle with base angles B and C equal to 36o and

point D on BC such that AD = CD = 2 (Hint: sin 54o =

√
5 + 1

4
)

Find
A

B
.
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QUESTION 9

Let:

A = The distance from the point (3, 5) to the line y = −3

4
x+ 3

B = The distance from the point (12, 16) in rectangular coordinates to the point (15, arctan
(4

3

)
+
π

2
)

in polar coordinates

C = The shortest distance from the graph r = π to the graph −209

r
= r − 30 sin θ

D = The x-value of the polar coordinate (2π,
π

6
) in rectangular coordinates

Find A+B + C +D.
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QUESTION 10

Let:

A = ln(a), where a is the first quadrant root of x2 = i

B = ln(b), where b is the root of x5 = 1 with argument within (0,
π

2
)

C = ln(c), where c is the root of x8 = 1 with the 3rd smallest argument

D = The value of
eiθ − e−iθ

2i
, expressed in terms of θ

Find A+B + C +D, for i =
√
−1.
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QUESTION 11

Beginning with an initial value of 0, add the value of each true statement and subtract the value of each false statement
below to find the final answer.

• (4) In a cyclic quadrilateral, the sine of opposite angles are always equal.

• (6) In a cyclic quadrilateral, the cosine of opposite angles sum to 0.

• (−5) A singular matrix has a determinant of 1.

• (12) If U , V , and W are three-dimensional vectors and × denotes the cross product, U×(V +W ) = (U×V )+(U×W ).

• (1) A continuous function is either always increasing or always decreasing.

• (−14) The amplitude of the graph of y = 3
√

7 sin(7x)− 6
√

7 cos(7x) is 3
√

14.

• (−10) A Gaussian Integer is a complex number z = a+ bi such that a and b are both integers.

• (2017) The probability that f(x) = 4 given the function f(x) = x2 when x is chosen from the interval [−4, 4] is
2

9
.
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QUESTION 12

Let:

A = The vector resulting from < 3, 6, 2 > + < 2, 6, 1 >

B = The vector resulting from < 3, 6, 2 > − < 2, 6, 1 >

C = The vector resulting from < 3, 6, 2 > × < 2, 6, 1 >

D = The value of < 3, 6, 2 > • < 2, 6, 1 >

Find the sum of the components of A+DB + C.
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QUESTION 13

Joshua has two urns. In one urn there are eight green marbles, three red marbles, and four blue marbles. In a second
urn there are five yellow marbles, six red marbles, and nine blue marbles. Joshua randomly selects an urn and randomly
draws a marble from it. If Joshua drew a red marble, what is the probability that the urn he drew from was the first urn?
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QUESTION 14

Let:

A = The distance traveled by an ant walking on r = cos(θ) for θ = [0, 2π]

B = The value of a in the equation −3e3−a + 2e−2a+6 = 20

C = The value of WAT in the decomposition of
4x2 + 13x− 7

x3 + 6x2 − x− 30
as expressed in the form

W

x+ i
+

A

x+ j
+

T

x+ k

D = The value of |my| given m =
√
−2i, y = |m|, and i =

√
−1

Find A+B + C +D.
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